首页> 外文OA文献 >Numerical investigation of radiative optically-dense transient magnetized reactive transport phenomena with cross diffusion, dissipation and wall mass flux effects
【2h】

Numerical investigation of radiative optically-dense transient magnetized reactive transport phenomena with cross diffusion, dissipation and wall mass flux effects

机译:具有交叉扩散,耗散和壁质量通量效应的辐射光致密度瞬态磁化反应输运现象的数值研究

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

High temperature electromagnetic materials fabrication systems in chemical engineering require ever more sophisticated theoretical and computational models for describing multiple, simultaneous thermophysical effects. Motivated by this application, the present article addresses transient magnetohydrodynamic heat and mass transfer in chemically-reacting fluid flow from an impulsively-started vertical perforated sheet. Thermal radiation flux, internal heat generation (heat source), Joule magnetic heating (Ohmic dissipation), thermo-diffusive and diffuso-thermal (i.e. cross-diffusion) effects and also viscous dissipation are incorporated in the mathematical model. To facilitate numerical solutions of the coupled, nonlinear boundary value problem, non-similar transformations are employed and the partial differential conservation equations are normalized into a dimensionless system of momentum, energy and concentration equations with associated boundary thermal conditions. An implicit finite difference method (FDM) is utilized to solve the unsteady equations. Verification of the FDM solutions for dimensionless velocity, temperature and concentration functions is achieved with a variational finite element method code (MAGNETO-FEM) and also a network simulation method code (MAG-PSPICE). The influence of the emerging thermo-physical parameters on transient velocity, temperature, concentration, wall shear stress, Nusselt number and Sherwood number is elaborated. The flow is accelerated with increasing thermal radiative flux, Eckert number, heat generation and Soret number whereas the flow is decelerated with greater wall suction, heat absorption, magnetic field and Prandtl number. Temperatures are also observed to be elevated with magnetic parameter, radiation heat transfer, Dufour number, heat generation (source) and Eckert number with the contrary effects computed for increasing suction parameter or Prandtl number. The species concentration is enhanced with Soret number and generative chemical reaction whereas it is depressed with greater wall suction, Schimidt number and destructive chemical reaction parameter
机译:化学工程中的高温电磁材料制造系统需要更复杂的理论和计算模型来描述多个同时发生的热物理效应。受该应用的启发,本发明解决了来自脉冲启动的垂直穿孔板的化学反应流体流中的瞬时磁流体动力热和质量传递。数学模型中包括了热辐射通量,内部热量产生(热源),焦耳磁加热(欧姆耗散),热扩散和扩散热(即交叉扩散)效应以及粘性耗散。为了简化耦合非线性边界值问题的数值解,采用了非相似变换,并将偏微分守恒方程标准化为具有相关边界热条件的动量,能量和浓度方程的无量纲系统。隐式有限差分法(FDM)用于求解非稳态方程。使用变分有限元方法代码(MAGNETO-FEM)和网络仿真方法代码(MAG-PSPICE),可以实现针对无量纲速度,温度和浓度函数的FDM解决方案的验证。阐述了新兴的热物理参数对瞬态速度,温度,浓度,壁切应力,努塞尔数和舍伍德数的影响。随着热辐射通量,Eckert数,生热和Soret数的增加,流加速,而壁吸力,吸热,磁场和Prandtl数越大,流减速。还观察到温度随着磁参数,辐射热传递,杜福尔数,热产生(源)和埃克特数的升高而升高,而相反的结果是为增加吸力参数或普朗特数而计算的。 Soret数和发生化学反应会增加物种浓度,而壁吸力,Schimidt数和破坏性化学反应参数会增加,从而降低物种浓度

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号